Methods of Particle Detection

Aaron White

Today

- Review Standard Model
- Particle detection methods slides
- Visit mPandaX

Review the Standard Model

Particles of the Standard Model

Quarks: Three makes a baryon Two makes a **meson**

Top three are charged Neutrinos are neutral

Bosons The Gauge bosons carry force The Higgs boson gives some particles mass

Baryons: $\frac{D}{a}$

Mesons:

K0

+iq

Strong Force and Gluons

- Attractive between all quarks
- Confinement:
 - Quarks interact w/ each other
 - Unlike photons carrying electric field
 - Field lines don't spread out
 - Constant force over long distance

So how do we see them?

(You know one method already)

Cloud Chamber

- Super saturated vapor (water, alcohol)
- Charged particle ionizes atoms in path, vapor condenses, creates track
- Portable, experiments carried out in balloons and on mountains
- Magnetic field can allow momentum, charge analysis
- Place lead bar in middle, watch particles interact
- Can ID particles based on track: thickness, etc
- Can see decays
- Discovered: e+, muon, K0, lambda0, sigma-, pion

Cloud Chamber

http://upload.wikimedia.org/wikipedia/commons/6/69/PositronDiscovery.jpg

http://www.pd.infn.it/~dorigo/omega-dia-w.gif

http://upload.wikimedia.org/wikipedia/commons/2/2a/Radon220_decay_in_a_cloud_chamber.jp

http://upload.wikimedia.org/wikipedia/commons/a/ac/Alpha particle and electrons from a thorium rod in a cloud chamber.jpg

Cherenkov Radiation

- When charged particle passes through medium faster than the speed of light in that medium
- Kind of a sonic boom for light
- The particle *polarizes* the media
- Oscillating dipoles radiate (usually visible) light
- Good materials:
 - Transparent
 - Dielectric
 - Lead glass, aerogel, water, etc
- Detect the light (Super Kam)

https://indico.cern.ch/event/318429/material/slides/0.pdf

Cherenkov Radiation

http://www.planetdamage.com/wp-content/uploads/2009/09/cherenkov-01.jpg

http://images.ookaboo.com/photo/m/HFIR_Gamma_Blue_Glow_m.jpg

Scintillation

- Charged particle passes through medium
- Excites electrons in medium
- Detection transition radiation
- Photons are detected with photomultiplier tube (PMT)
- Use either
 - a large liquid mass
 - Strips of transparent ig plastic, glass, crystal
- Use to search for:
 - Dark matter DM decays, produces ionizing radiation
 - Neutrinos neutrino creates electron, which ionizes media

Scintillation

http://quarknet.fnal.gov/toolkits/new/graphics/muoncount.gif

Liquid Scintillators

Plastic Scintillators

Drift Chamber

- Charged particles ionize gas in chamber
 - Remember ions are electrically positive
- Strong electrical field pulls ions towards a wire
- As ion moves towards wire, speeds up and ionizes more gas
- Ions hit wire, detected by electronics

Drift Chamber

- Many configurations of same principle
 - Box with many cross-hatched wires
 - Tubes with a single wire
 - Plates resistive pad chambers

Silicon

- "We have all these computer chips, can we use them to detect particles?
 - Yes
- Silicon detectors use the same manufacturing used make a CPU to make microscopic particle detectors
- Very good for precise, high resolution particle tracks

Silicon

http://www.nature.com/nature/journal/v448/n7151/images/nature06078-f2.2.jpg

http://www.liv.ac.uk/particle-physics/Velo-340x300.jpg

Photomultiplier

Detects individual photons

Can buy online

http://upload.wikimedia.org/wikipedia/commons/5/5f/PhotoMultiplierTubeAndScintillator.jpg

Visit mPandaX

(Following slides use images taken from **Wolfgang Lorenzon**, Umich and **Guillaume Plante**, Columbia University)

Wolfgang Lorenzon, Michigan

Guillaume Plante Columbia University – LIDINE2013 on behalf of the XENON Collaboration

